Ciencias Exactas y Naturales

pj─120─en Linterna a base del efecto Peltier Seebeck

  • Categoría: Pandilla Juvenil (1ro. 2do. y 3ro. de nivel Secundaria)
  • Área de participación: Ciencias Exactas y Naturales
  • Asesor: MARISA CALLE MONROY
  • Equipo [ ]: Aline Rebeca Montoya Martinez() , Marco Emiliano Carranza Buendía() , Angel Giovanny Lagunes Romero(2o Chichen-itzá)

Resumen

El efecto peltier es un fenómeno físico en el cual consiste en la recolección de varios resultados.

Teniendo la posibilidad de obtener beneficios usando este efecto este efecto termoeléctrico como una fuente de electricidad alterna, obtienen de sus resultados de un factor  que es constante en todos los ambientes físicos, lo cual este nos propone ventajas importantes ante algunos de produccion electrica. or esta razón hemos seleccionado construir un objeto tan importante como la lámpara, la cual es alimentada por el efecto termoeléctrico riormente mencionado por ejemplificar las posibilidades que tiene este al implementarlo en parte de nuestra vida diaria. para poder construir la lámpara peltier seebeck fue necesario conocer las especificaciones del efecto peltier y los materiales que fueron utilizados para obtener resultados suficientes y positivos para denominar como método de obtención eléctrica sustentable en un futuro a pesar de tener deficiencias. una vez construida la lámpara fue necesario hacer varios cambios   debido a la temperatura, los camb¿io que fueron requeridos fueron la adquisición de 2 celdas más. }un beneficio de esta lámpara fue la reducción del uso de baterías que a largo plazo nos dañan a todo lo que está nuestro alrededor, además que las celdas son una energía renovable y se pueden utilizar en diferentes objetos electrónicos.

Esta linterna funciona de manera correcta con las modificaciones agregadas, ya que no hay problema para generar energía pues emite una luz considerable

Pregunta de Investigación

¿Cómo construir una linterna a base de el Efecto Peltier seebeck?

Planteamiento del Problema

Actualmente en nuestro país sufren de un exceso de contaminación ambiental debido a varios factores que el humano ocasiona.Uno de estos bes  el tiempoir que setarda en degradarse los solido.Uno de los que más nos afecta son las baterías, pues a pesar de que se tardan mucho tiempo en degradarse, genera mucha radiación que a largo plazo genera daño en nosotros.

La linterna es una posibilidad de ser un artefacto que produzca luz solo con agarrarla o sostenerla, lo cual puede ser atractivo para muchas personas.

Esta es una alternativa para reducir el uso de contaminantes como lo son las baterías que ademas esta es una energía renovable que no daña al medio ambiente.

Al ser una energía renovable nos brinda un mayor tiempo de uso o de vida que las linternas comerciales.

Si esta linterna llega a sufrir un daño, se puede reconstruir o reutilizar estas celdas en alguna otra base, por ejemplo otras linternas tradicionales que han sufrido algún daño en la zona de la baterías.  

Antecedentes

En 1834 es cuando el físico francés Jean Charles Peltier descubrió este efecto termoeléctrico, en el curso de sus investigaciones sobre la electricidad. Este interesante fenómeno se mantuvo reducido a algunas pequeñas aplicaciones hasta ahora, época en que se comienza a utilizar sus posibilidades con más frecuencia.

El efecto Peltier consiste en hacer pasar una corriente por un circuito compuesto de materiales diferentes cuyas uniones están a la misma temperatura, se produce el efecto inverso al Seebeck (efecto termoeléctrico). En este caso, se absorbe calor en una unión y se desprende en la otra. La parte que se enfría suele estar cerca de los 10º C aproximadamente., mientras que la parte que absorbe calor puede alcanzar rápidamente los 80º C.

Lo que lo hace aún más interesantes es el hecho de que, al invertir la polaridad de alimentación, se invierta también su funcionamiento; es decir: la superficie que antes generaba frío empieza a generar calor, y la que generaba calor empieza a generar frío.

Gracias a los inmensos avances en el campo de semiconductores, hoy en día, se construyen sólidamente y en tamaño de una moneda. Los semiconductores están fabricados con Teluro y Bismuto para ser tipo P o N (buenos conductores de electricidad y malos del calor) y así facilitar el trasvase de calor del lado frío al caliente por el efecto de una corriente continua

Como todo en esta vida, las unidades Peltier también tienen algunos inconvenientes a tener en cuenta. Como el alto consumo eléctrico, o que dependiendo de la temperatura y la humedad puede producirse condensación y en determinadas condiciones incluso puede formarse hielo.

Aprovechamiento.

El fenómeno se aprovecha con más auge a través de las llamadas células Peltier: Alimentando una de estas células PELTIER, se establece una diferencia de temperatura entre las dos caras de la célula PELTIER, esta diferencia depende de la temperatura ambiente donde este situada la célula PELTIER, y del cuerpo que queramos enfriar o calentar. Su uso más bien es para enfriar, ya que para calentar existen las resistencias eléctricas, que son mucho más eficientes en este cometido que las células Peltier, estas son mucho más eficaces refrigerando, ya que su reducido tamaño, las hace ideales para sustituir costosos y voluminosos equipos de refrigeración asistida por gas o agua.

Células Peltier.

Las aplicaciones prácticas de estas células son infinitas. La lista podría ser interminable, ya que son muchas las aplicaciones en que es necesario utilizar el frío y al mismo tiempo, el calor. Si observamos la figura, podemos ver que se compone, prácticamente, de dos materiales semiconductores, uno con canal N y otro con canal P, unidos entre sí por una lámina de cobre.

Si en el lado del material N se aplica la polaridad positiva de alimentación en el lado del material P la polaridad negativa, la placa de cobre de la parte superior enfría, mientras que la inferior calienta. Si en esta misma célula, se invierte la polaridad de alimentación, es decir, se aplica en el lado del material N la polaridad negativa y en el lado del material P la positiva, se invierte la función de calor / frío: la parte superior calienta y la inferior enfría.

Físicamente los elementos de un módulo Peltier son bloques de 1 mm3 conectado eléctricamente en serie y térmicamente en paralelo (ver figura).

Los módulos Peltier también funcionan mejor o peor en función de la alimentación que requieran, ya que no todos funcionan con la misma tensión ni corriente. Por consiguiente, cada tipo de módulo se alimenta con la tensión indicada por el fabricante, para evitar que se inutilice en un plazo breve.

Si tenemos en cuenta sus reducidas dimensiones, unos milímetros escasos, una sola célula puede alcanzar, como máximo una potencia frigorífica de 0,5 watts.

Es decir, que para conseguir potencias frigoríficas de 15 a 20 watts, hay que realizar baterías formadas, como mínimo por 30 o 40 células. De hecho, al aumentar el número de células, aumenta la superficie irradiante y, por lo tanto, la potencia refrigerante. En resumen, que tanto la dimensión como la potencia calorífica obtenida dependen del número de elementos utilizados por módulo.

Hoy en día, se construyen sólidamente y en tamaño de una moneda. Los semiconductores están fabricados con Teluro y Bismuto para ser tipo P o N (buenos conductores de electricidad y malos del calor) y así facilitar el trasvase de calor del lado frío al caliente por el efecto de una corriente continua.

Estos materiales, que generan electricidad a partir de cambios de temperatura, cuentan con aplicaciones que permiten un mayor aprovechamiento de los recursos energéticos…

Efecto Termoeléctrico

En lugares cálidos los materiales termoeléctricos se emplean como medio para refrigerar los asientos…

En lugares cálidos los materiales termoeléctricos se emplean como medio para refrigerar los asientos…

Los dispositivos termoeléctricos se basan en el hecho de que cuando ciertos materiales son calentados, generan un voltaje eléctrico significativo. Por el contrario, cuando se les aplica un voltaje, se vuelven más calientes en un lado, y más fríos en el otro. Los electrones se mueven del extremo caliente del material al extremo frío, creando electrodos positivos y negativos y con ello el voltaje eléctrico.

Este efecto, conocido como PeltierSeebeck, es reversible. Esto no se produce en todos los materiales ya que, por ejemplo, el filamento de las bombillas incandescentes produce calor al aplicarle una diferencia de voltaje (efecto Joule), pero no es un efecto reversible.

Materiales Termoeléctricos

El proceso de termoelectricidad sólo ocurre en ciertos materiales, especialmente bien en los semiconductores (los materiales con los que se fabrican los chips). El problema fundamental para crear materiales termoeléctricos eficientes es que necesitan ser muy buenos transmitiendo la electricidad, pero no el calor.

Actualmente, los materiales termoeléctricos tienen un bajo rendimiento energético, sólo un 6 por ciento. Una nueva generación de materiales, en lo que se añade antimonio y plomo al semiconductor de teluro de plomo, produce un material termoeléctrico que es más eficiente en las altas temperaturas que los materiales existentes, alcanzando el 14 por ciento de eficiencia. La meta a largo plazo es alcanzar el 20 por ciento de eficiencia.

Demostración sencilla del efecto Seebeck

La clave para hacerlos más prácticos ha sido crear materiales semiconductores especiales en los cuales se crearon diminutos patrones para alterar el comportamiento de los materiales. Esto puede incluir la incorporación de nano partículas o nano cables en una matriz de otro material. Estas estructuras nano métricas interfieren con el flujo de calor pero permiten a la electricidad fluir libremente.

Aplicaciones

La tecnología termoeléctrica actual sólo se usa en campos muy especializados, como la refrigeración de estado sólido, porque los materiales no son muy eficientes. Un ejemplo es el enfriamiento de asientos de automóviles en climas cálidos. Los dispositivos, similares a los calentadores de asientos, proporcionan confort directamente al individuo, en vez de enfriar el automóvil entero, ahorrando costos de climatización y de energía. Otra aplicación curiosa son las botas que emplean la termoelectricidad generada por el calor de los pies para cargar el teléfono móvil.

Los motores de combustión interna actuales sólo aprovechan un 25% de la energía liberada en la combustión. Las células fotovoltaicas tienen un rendimiento máximo de un 15%. Sin embargo, los nuevos materiales permiten ahorros substanciales de energía al poderse fabricar motores más eficientes. Las nuevas células fotovoltaicas híbridas permiten generar energía eléctrica y térmica simultáneamente. Los dispositivos electrónicos también aprovechar el calor radiado en termoelectricidad.

Otro de los usos de estos nuevos materiales podría ser en la conversión del calor desechado de los reactores nucleares, en el enfriamiento de los productos obtenidos de los altos hornos o en la extracción de crudo de las plataformas petrolíferas. A su vez, la compañía Fujitsu ha desarrollado un dispositivo híbrido capaz de generar electricidad utilizando dos fuentes de energía natural simultáneamente: luz y calor. Esta nueva generación de dispositivos hará posible mantener la producción de energía a todas horas, reemplazando una fuente cuando la otra no esté disponible.

Historia de la lámpara

La historia de la lamparita empieza hace casi doscientos años, cuando Davy, químico inglés, hizo aparecer por primera vez, ante los atónitos miembros de la Royal Institution de Londres, un brillante hilo luminoso, entre dos electrodos formados por varillas de carbón de leña y unidos a dos polos de una enorme pila eléctrica. Desgraciadamente, este “arco voltaico”, que fue llamado “huevo eléctrico de Davy”, no se prestaba para usos prácticos, porque los carbones no producían una luz estable.

Sólo después de 1840, gracias a la invención de un nuevo tipo de pila, hecha por Daniel y Bunsen, que suministraba una corriente más intensa y duradera, el problema relativo a la iluminación eléctrica pudo ser afrontado con seriedad y gradualmente resuelto. Se debe al francés Foucault el primer gran paso adelante. Sustituyendo el carbón de leña por el que se forma en las retortas durante la producción de gas de alumbrado, llegó a preparar dos auténticos aparatos de iluminación que permitieron a una cuadrilla de obreros trabajar durante una noche entera en la construcción del Palacio de la Industria (Exposición de París de 1855). Veintitrés años después, siempre en París, se llevaba a cabo, con éxito, la primera tentativa de iluminación pública en la Plaza de la Ópera.

LA LAMPARITA DE EDISON: Durante el siglo XIX se mantuvo la iluminación a gas, con su luz suave y agradable, pero el mundo estaba ya preparado para el aprovechamiento de la energía eléctrica en este campo. Un grupo de financistas e industriales norteamericanos se

dirigió a Edison, inventor del fonógrafo, y ya conocido como el “Mago de Menlo Park”, para que hiciese el milagro. Edison tuvo una idea feliz; volver incandescente un filamento de carbón en una ampolla de vidrio en la que se haría previamente el vacío perfecto; pero la realización de esta idea le costó muchos años de estudio y de minucioso y perseverante trabajo.

Los experimentos iniciados por él en 1870, sólo concluyeron en 1882. Los neoyorquinos, entusiasmados con el nuevo prodigio de Edison, “mandaron a descansar” los viejos fanales de gas y el familiar farol. En realidad, la lamparita de Edison ya había tenido su bautismo de luz en la exposición universal de París de 1881. En la ampolla, la incandescencia luminosa era obtenida mediante filamentos carbonizados de fibras de bambú del Japón, y tenía la virtud de asegurar una luz constante durante centenares de horas. Desde este momento, el problema fue solamente perfeccionar el nuevo sistema de instalación eléctrica. Una vez establecido el hecho de que las “radiaciones visibles producidas por un cuerpo incandescente aumentan con el aumento de la temperatura”, se comprendió rápidamente que el efecto luminoso sería tanto más sensible cuanto más se pudiese “elevar la temperatura del filamento e impedir la dispersión del calor”.

LA LAMPARITA DE FILAMENTO METÁLICO: A partir de 1890, las fábricas se sirvieron de sutilísimos hilos de metal, con una temperatura dé fusión mucho más alta. Fueron sucesivamente experimentados el osmio, el tantalio, y, en 1906, el tungsteno, que es  hoy considerado el mejor porque, además de ser resistente, es también un óptimo conductor de la electricidad. Para obtener filamentos de muy pequeño diámetro, fue usada primero una mezcla de polvo de tungsteno y sustancias adhesivas. Desde 1911, como consecuencia del progreso de los procedimientos industriales, se consiguió trefilar el tungsteno y aumentó la duración del filamento. Además se cambió la disposición del filamento mismo en la ampolla. De esta manera, su poder de absorción fue reducido a un vatio por bujía; de ahí el nombre de “mono vatio” dado a este tipo de lámpara.

LA LÁMPARA DE MEDIO VATIO: Otro paso adelante fue dado, en 1913, con un nuevo procedimiento. Para aumentar la temperatura del filamento, y para frenar la dispersión de calor, se tuvo la idea de rellenar las ampollas, en las que se había hecho el vacío, con un gas inerte que no diese lugar a alteraciones químicas. Se obtuvo así el aumento de temperatura deseado, pero fue más difícil limitar la fuga de calorías. El físico Langmuir comprendió que de esto dependía la disposición del filamento dentro de la ampolla, y demostró que se podía alcanzar una dispersión mínima de calor arrollando el filamento en hélice sobre sí mismo.

Así perfeccionadas, las lamparitas con filamento en hélice fueron llamadas de “medio vatio”, pues se calculó haber llegado a crear el tipo en el cual la potencia de absorción de la corriente era reducida a la “mitad de un vatio por bujía”. Pero el triunfo más resonante fue que, con la nueva fórmula, se llegó a retardar notablemente la disgregación del filamento, logrando una duración mayor de la lamparita.

FABRICACIÓN, METALURGIA DEL TUNGSTENO: Si las vidrierías han resuelto fácilmente el problema del vidrio adecuado para la fabricación de ampollas (o bulbos) para lámparas, la fabricación del filamento es, en cambio, extremadamente delicada. Debido a que el metal, para ser utilizado eficazmente, no debe fundirse, se le extrae del “wolframio” mediante complicados procesos químicos.

El tungsteno, que se obtiene bajo forma de “óxido” del tungsteno puro, es mezclado primeramente a pequeñas cantidades de sustancias capaces de mejorar sus propiedades, siendo luego pasado a hornos especiales en atmósfera de hidrógeno (para evitar la oxidación) de estos hornos sale bajo forma de un tenue polvo gris.

La clave para hacerlos más prácticos ha sido crear materiales semiconductores especiales en los cuales se crearon diminutos patrones para alterar el comportamiento de los materiales. Esto puede incluir la incorporación de nano partículas o nano cables en una matriz de otro material. Estas estructuras nano métricas interfieren con el flujo de calor pero permiten a la electricidad fluir libremente.

Aplicaciones

La tecnología termoeléctrica actual sólo se usa en campos muy especializados, como la refrigeración de estado sólido, porque los materiales no son muy eficientes. Un ejemplo es el enfriamiento de asientos de automóviles en climas cálidos. Los dispositivos, similares a los calentadores de asientos, proporcionan confort directamente al individuo, en vez de enfriar el automóvil entero, ahorrando costos de climatización y de energía. Otra aplicación curiosa son las botas que emplean la termoelectricidad generada por el calor de los pies para cargar el teléfono móvil.

Los motores de combustión interna actuales sólo aprovechan un 25% de la energía liberada en la combustión. Las células fotovoltaicas tienen un rendimiento máximo de un 15%. Sin embargo, los nuevos materiales permiten ahorros substanciales de energía al poderse fabricar motores más eficientes. Las nuevas células fotovoltaicas híbridas permiten generar energía eléctrica y térmica simultáneamente. Los dispositivos electrónicos también aprovechar el calor radiado en termoelectricidad.

Otro de los usos de estos nuevos materiales podría ser en la conversión del calor desechado de los reactores nucleares, en el enfriamiento de los productos obtenidos de los altos hornos o en la extracción de crudo de las plataformas petrolíferas. A su vez, la compañía Fujitsu ha desarrollado un dispositivo híbrido capaz de generar electricidad utilizando dos fuentes de energía natural simultáneamente: luz y calor. Esta nueva generación de dispositivos hará posible mantener la producción de energía a todas horas, reemplazando una fuente cuando la otra no esté disponible.

Historia de la lámpara

La historia de la lamparita empieza hace casi doscientos años, cuando Davy, químico inglés, hizo aparecer por primera vez, ante los atónitos miembros de la Royal Institution de Londres, un brillante hilo luminoso, entre dos electrodos formados por varillas de carbón de leña y unidos a dos polos de una enorme pila eléctrica. Desgraciadamente, este “arco voltaico”, que fue llamado “huevo eléctrico de Davy”, no se prestaba para usos prácticos, porque los carbones no producían una luz estable.

Sólo después de 1840, gracias a la invención de un nuevo tipo de pila, hecha por Daniel y Bunsen, que suministraba una corriente más intensa y duradera, el problema relativo a la iluminación eléctrica pudo ser afrontado con seriedad y gradualmente resuelto. Se debe al francés Foucault el primer gran paso adelante. Sustituyendo el carbón de leña por el que se forma en las retortas durante la producción de gas de alumbrado, llegó a preparar dos auténticos aparatos de iluminación que permitieron a una cuadrilla de obreros trabajar durante una noche entera en la construcción del Palacio de la Industria (Exposición de París de 1855). Veintitrés años después, siempre en París, se llevaba a cabo, con éxito, la primera tentativa de iluminación pública en la Plaza de la Ópera.

LA LAMPARITA DE EDISON: Durante el siglo XIX se mantuvo la iluminación a gas, con su luz suave y agradable, pero el mundo estaba ya preparado para el aprovechamiento de la energía eléctrica en este campo. Un grupo de financistas e industriales norteamericanos se

Objetivo

Construir una Linterna a base del efecto Peltier Seebeck

Justificación

El efecto peltier de seebeck se usa con las células que son capaces de generar una corriente eléctrica, ya que tiene diferentes superficies adyacentes.
Este efecto funciona sobre la base de la energía producida por el cuerpo, ya que captura el calor de nuestras manos cuando lo sostenemos. Esto ayudará a evitar el uso de baterías en estas linternas.
En este producto, orientaremos las linternas que ya no se usan para colocar un sensor con las celdas Seebeck de Peltier.
Este es un dispositivo termoeléctrico que quiere decir que se basa en el hecho de que cuando ciertos materiales son cal, generan un voltaje eléctrico alto significativo, a medida que aumenta el número de celdas, la superficie de irradiación aumenta la potencia.
Actualmente, la tecnología solo se utiliza en campos muy especializados, por lo que es una opción innovadora, ya que evita la contaminación que generan las baterías, ya que no es un contaminante a largo plazo.
además este efecto es reversible que no produce en todos los materiales; Especialmente bien en semiconductores (los materiales que están hechos con un chip) son eficientes porque necesitan ser muy buenos para transmitir electricidad, pero no calor.

 

Hipótesis

Si logramos construir una linterna a base de el efecto peltier seebeck sustituiremos el uso el baterías

Método (materiales y procedimiento)

4 celdas peltier de 40mm X 40mm

1 tubo de aluminio

1 tubo de PVC de 6 de diámetro

9 leds luz blanca con capacidad de 3.7

7 cm de cable rojo y negro

1 cautin

Soldadura y pasta para soldar

Pistola de silicon

3 recargas de silicon

Cinta de aislar

Voltímetro

Procedimiento

1.- Revisar los voltios de la celda peltier con el voltímetro (15-25 grados )

2.- Colocar tu mano en la celda peltier para revisar que suba la temperatura (37-45)

3.-Insertar el tubo de aluminio al tubo de  PVC y asegurarlo con silicon

4.-Cortar de forma vertical la parte superior de los tubos hasta llegar al otro extremo del tubo

5.- Colocar las celdas peltier en la parte posteriormente cortadas y asegurarlo con silicon

6.- Soldar los  leds a la celda con el cautín y la soldadura para generar electricidad

Galería Método

Resultados

Obtuvimos una linterna que funciona con una celda llamada peltier, produce una luz brillante y con un  tamaño aproximadamente de 15 cm de largo y 6 de diámetro ya que tiene un color blanco ya que se usa un tubo pvc, la linterna pesa aproximadamente 350 gramos y su costo es de 500 pesos.

 

Galería Resultados

Discusión

La potencia de las celdas peltier es de un volts pero al agregar las celdas a nuestro prototipo descubrimos que tienen la capacidad de .7 volts oe lo cual decidimos aumentar la cantidad de celdas.

Esta linterna funciona de manera correcta ya que no hay problema para generar energia al sostener las celdas.pues genera energia necesaria.

Conclusiones

Se logró obtener una alternativa para las linternas comerciales,esta logra encender con solo sostenerla en la parte que se encuentran las celdas. Otro beneficio es la reducción del uso de baterías que a largo plazo nos dañan y dañan al medio ambiente.Además de que las celdas son renovables se pueden usar en diferentes objetos electrónicos

 

Bibliografía



pj─120─en Linterna a base del efecto Peltier Seebeck

Summary

The peltier effect is a physical phenomenon in which it consists in the collection of several results.
Having the possibility of obtaining benefits using this effect, this thermoelectric effect as a source of alternating electricity, obtains from its results a factor that is constant in all physical environments, which offers us important advantages before some electrical production. For this reason we have chosen to build an object as important as the lamp, which is fed by the thermoelectric effect mentioned above for exemplifying the possibilities that this has to implement part of our daily lives. In order to build the pellet lamp seebeck it was necessary to know the specifications of the peltier effect and the materials that were used to obtain sufficient and positive results to be denominated as a method of obtaining sustainable electricity in the future despite having deficiencies. once the lamp was built it was necessary to make several changes due to the temperature, the changes that were required were the acquisition of 2 more cells. } One benefit of this lamp was the reduction of the use of batteries that damage us in the long term to all that is around us, besides that the cells are a renewable energy and can be used in different electronic objects.
This flashlight works correctly with the added modifications, since there is no problem to generate energy because it emits considerable light

Research Question

how to build a flashlight based on the seebeck peltier effect?

Problem approach

Currently in our country suffer from an excess of environmental pollution due to several factors that the human ocasiona.Uno of these bes the time that it takes

degrade the solido.Uno of those that most affects us are the batteries, because despite the fact that they take a long time to degrade, it generates a lot of radiation that in the long term generates damage in us.
The lantern is a possibility to be an artifact that produces light just by holding it or holding it, which can be attractive to many people.
This is an alternative to reduce the use of pollutants, such as batteries, which is also a renewable energy that does not harm the environment.
Being a renewable energy gives us more time of use or life than commercial lanterns.
If this lantern is damaged, you can rebuild or reuse these cells in some other base, for example other traditional lanterns that have suffered some damage in the area of ​​the batteries.

 

Background

En 1834 es cuando el físico francés Jean Charles Peltier descubrió este efecto termoeléctrico, en el curso de sus investigaciones sobre la electricidad. Este interesante fenómeno se mantuvo reducido a algunas pequeñas aplicaciones hasta ahora, época en que se comienza a utilizar sus posibilidades con más frecuencia.

El efecto Peltier consiste en hacer pasar una corriente por un circuito compuesto de materiales diferentes cuyas uniones están a la misma temperatura, se produce el efecto inverso al Seebeck (efecto termoeléctrico). En este caso, se absorbe calor en una unión y se desprende en la otra. La parte que se enfría suele estar cerca de los 10º C aproximadamente., mientras que la parte que absorbe calor puede alcanzar rápidamente los 80º C.

Lo que lo hace aún más interesantes es el hecho de que, al invertir la polaridad de alimentación, se invierta también su funcionamiento; es decir: la superficie que antes generaba frío empieza a generar calor, y la que generaba calor empieza a generar frío.

Gracias a los inmensos avances en el campo de semiconductores, hoy en día, se construyen sólidamente y en tamaño de una moneda. Los semiconductores están fabricados con Teluro y Bismuto para ser tipo P o N (buenos conductores de electricidad y malos del calor) y así facilitar el trasvase de calor del lado frío al caliente por el efecto de una corriente continua

Como todo en esta vida, las unidades Peltier también tienen algunos inconvenientes a tener en cuenta. Como el alto consumo eléctrico, o que dependiendo de la temperatura y la humedad puede producirse condensación y en determinadas condiciones incluso puede formarse hielo.

Aprovechamiento.

El fenómeno se aprovecha con más auge a través de las llamadas células Peltier: Alimentando una de estas células PELTIER, se establece una diferencia de temperatura entre las dos caras de la célula PELTIER, esta diferencia depende de la temperatura ambiente donde este situada la célula PELTIER, y del cuerpo que queramos enfriar o calentar. Su uso más bien es para enfriar, ya que para calentar existen las resistencias eléctricas, que son mucho más eficientes en este cometido que las células Peltier, estas son mucho más eficaces refrigerando, ya que su reducido tamaño, las hace ideales para sustituir costosos y voluminosos equipos de refrigeración asistida por gas o agua.

Células Peltier.

Las aplicaciones prácticas de estas células son infinitas. La lista podría ser interminable, ya que son muchas las aplicaciones en que es necesario utilizar el frío y al mismo tiempo, el calor. Si observamos la figura, podemos ver que se compone, prácticamente, de dos materiales semiconductores, uno con canal N y otro con canal P, unidos entre sí por una lámina de cobre.

Si en el lado del material N se aplica la polaridad positiva de alimentación en el lado del material P la polaridad negativa, la placa de cobre de la parte superior enfría, mientras que la inferior calienta. Si en esta misma célula, se invierte la polaridad de alimentación, es decir, se aplica en el lado del material N la polaridad negativa y en el lado del material P la positiva, se invierte la función de calor / frío: la parte superior calienta y la inferior enfría.

Físicamente los elementos de un módulo Peltier son bloques de 1 mm3 conectado eléctricamente en serie y térmicamente en paralelo (ver figura).

Los módulos Peltier también funcionan mejor o peor en función de la alimentación que requieran, ya que no todos funcionan con la misma tensión ni corriente. Por consiguiente, cada tipo de módulo se alimenta con la tensión indicada por el fabricante, para evitar que se inutilice en un plazo breve.

Si tenemos en cuenta sus reducidas dimensiones, unos milímetros escasos, una sola célula puede alcanzar, como máximo una potencia frigorífica de 0,5 watts.

Es decir, que para conseguir potencias frigoríficas de 15 a 20 watts, hay que realizar baterías formadas, como mínimo por 30 o 40 células. De hecho, al aumentar el número de células, aumenta la superficie irradiante y, por lo tanto, la potencia refrigerante. En resumen, que tanto la dimensión como la potencia calorífica obtenida dependen del número de elementos utilizados por módulo.

Hoy en día, se construyen sólidamente y en tamaño de una moneda. Los semiconductores están fabricados con Teluro y Bismuto para ser tipo P o N (buenos conductores de electricidad y malos del calor) y así facilitar el trasvase de calor del lado frío al caliente por el efecto de una corriente continua.

Estos materiales, que generan electricidad a partir de cambios de temperatura, cuentan con aplicaciones que permiten un mayor aprovechamiento de los recursos energéticos…

Efecto Termoeléctrico

En lugares cálidos los materiales termoeléctricos se emplean como medio para refrigerar los asientos…

En lugares cálidos los materiales termoeléctricos se emplean como medio para refrigerar los asientos…

Los dispositivos termoeléctricos se basan en el hecho de que cuando ciertos materiales son calentados, generan un voltaje eléctrico significativo. Por el contrario, cuando se les aplica un voltaje, se vuelven más calientes en un lado, y más fríos en el otro. Los electrones se mueven del extremo caliente del material al extremo frío, creando electrodos positivos y negativos y con ello el voltaje eléctrico.

Este efecto, conocido como Peltier–Seebeck, es reversible. Esto no se produce en todos los materiales ya que, por ejemplo, el filamento de las bombillas incandescentes produce calor al aplicarle una diferencia de voltaje (efecto Joule), pero no es un efecto reversible.

Materiales Termoeléctricos

El proceso de termoelectricidad sólo ocurre en ciertos materiales, especialmente bien en los semiconductores (los materiales con los que se fabrican los chips). El problema fundamental para crear materiales termoeléctricos eficientes es que necesitan ser muy buenos transmitiendo la electricidad, pero no el calor.

Actualmente, los materiales termoeléctricos tienen un bajo rendimiento energético, sólo un 6 por ciento. Una nueva generación de materiales, en lo que se añade antimonio y plomo al semiconductor de teluro de plomo, produce un material termoeléctrico que es más eficiente en las altas temperaturas que los materiales existentes, alcanzando el 14 por ciento de eficiencia. La meta a largo plazo es alcanzar el 20 por ciento de eficiencia.

Demostración sencilla del efecto Seebeck…

La clave para hacerlos más prácticos ha sido crear materiales semiconductores especiales en los cuales se crearon diminutos patrones para alterar el comportamiento de los materiales. Esto puede incluir la incorporación de nano partículas o nano cables en una matriz de otro material. Estas estructuras nano métricas interfieren con el flujo de calor pero permiten a la electricidad fluir libremente.

Aplicaciones

La tecnología termoeléctrica actual sólo se usa en campos muy especializados, como la refrigeración de estado sólido, porque los materiales no son muy eficientes. Un ejemplo es el enfriamiento de asientos de automóviles en climas cálidos. Los dispositivos, similares a los calentadores de asientos, proporcionan confort directamente al individuo, en vez de enfriar el automóvil entero, ahorrando costos de climatización y de energía. Otra aplicación curiosa son las botas que emplean la termoelectricidad generada por el calor de los pies para cargar el teléfono móvil.

Los motores de combustión interna actuales sólo aprovechan un 25% de la energía liberada en la combustión. Las células fotovoltaicas tienen un rendimiento máximo de un 15%. Sin embargo, los nuevos materiales permiten ahorros substanciales de energía al poderse fabricar motores más eficientes. Las nuevas células fotovoltaicas híbridas permiten generar energía eléctrica y térmica simultáneamente. Los dispositivos electrónicos también aprovechar el calor radiado en termoelectricidad.

Otro de los usos de estos nuevos materiales podría ser en la conversión del calor desechado de los reactores nucleares, en el enfriamiento de los productos obtenidos de los altos hornos o en la extracción de crudo de las plataformas petrolíferas. A su vez, la compañía Fujitsu ha desarrollado un dispositivo híbrido capaz de generar electricidad utilizando dos fuentes de energía natural simultáneamente: luz y calor. Esta nueva generación de dispositivos hará posible mantener la producción de energía a todas horas, reemplazando una fuente cuando la otra no esté disponible.

Historia de la lámpara

La historia de la lamparita empieza hace casi doscientos años, cuando Davy, químico inglés, hizo aparecer por primera vez, ante los atónitos miembros de la Royal Institution de Londres, un brillante hilo luminoso, entre dos electrodos formados por varillas de carbón de leña y unidos a dos polos de una enorme pila eléctrica. Desgraciadamente, este “arco voltaico”, que fue llamado “huevo eléctrico de Davy”, no se prestaba para usos prácticos, porque los carbones no producían una luz estable.

Sólo después de 1840, gracias a la invención de un nuevo tipo de pila, hecha por Daniel y Bunsen, que suministraba una corriente más intensa y duradera, el problema relativo a la iluminación eléctrica pudo ser afrontado con seriedad y gradualmente resuelto. Se debe al francés Foucault el primer gran paso adelante. Sustituyendo el carbón de leña por el que se forma en las retortas durante la producción de gas de alumbrado, llegó a preparar dos auténticos aparatos de iluminación que permitieron a una cuadrilla de obreros trabajar durante una noche entera en la construcción del Palacio de la Industria (Exposición de París de 1855). Veintitrés años después, siempre en París, se llevaba a cabo, con éxito, la primera tentativa de iluminación pública en la Plaza de la Ópera.

LA LAMPARITA DE EDISON: Durante el siglo XIX se mantuvo la iluminación a gas, con su luz suave y agradable, pero el mundo estaba ya preparado para el aprovechamiento de la energía eléctrica en este campo. Un grupo de financistas e industriales norteamericanos se dirigió a Edison, inventor del fonógrafo, y ya conocido como el “Mago de Menlo Park”, para que hiciese el milagro. Edison tuvo una idea feliz; volver incandescente un filamento de carbón en una ampolla de vidrio en la que se haría previamente el vacío perfecto; pero la realización de esta idea le costó muchos años de estudio y de minucioso y perseverante trabajo.

Los experimentos iniciados por él en 1870, sólo concluyeron en 1882. Los neoyorquinos, entusiasmados con el nuevo prodigio de Edison, “mandaron a descansar” los viejos fanales de gas y el familiar farol. En realidad, la lamparita de Edison ya había tenido su bautismo de luz en la exposición universal de París de 1881. En la ampolla, la incandescencia luminosa era obtenida mediante filamentos carbonizados de fibras de bambú del Japón, y tenía la virtud de asegurar una luz constante durante centenares de horas. Desde este momento, el problema fue solamente perfeccionar el nuevo sistema de instalación eléctrica. Una vez establecido el hecho de que las “radiaciones visibles producidas por un cuerpo incandescente aumentan con el aumento de la temperatura”, se comprendió rápidamente que el efecto luminoso sería tanto más sensible cuanto más se pudiese “elevar la temperatura del filamento e impedir la dispersión del calor”.

LA LAMPARITA DE FILAMENTO METÁLICO: A partir de 1890, las fábricas se sirvieron de sutilísimos hilos de metal, con una temperatura dé fusión mucho más alta. Fueron sucesivamente experimentados el osmio, el tantalio, y, en 1906, el tungsteno, que es  hoy considerado el mejor porque, además de ser resistente, es también un óptimo conductor de la electricidad. Para obtener filamentos de muy pequeño diámetro, fue usada primero una mezcla de polvo de tungsteno y sustancias adhesivas. Desde 1911, como consecuencia del progreso de los procedimientos industriales, se consiguió trefilar el tungsteno y aumentó la duración del filamento. Además se cambió la disposición del filamento mismo en la ampolla. De esta manera, su poder de absorción fue reducido a un vatio por bujía; de ahí el nombre de “mono vatio” dado a este tipo de lámpara.

LA LÁMPARA DE MEDIO VATIO: Otro paso adelante fue dado, en 1913, con un nuevo procedimiento. Para aumentar la temperatura del filamento, y para frenar la dispersión de calor, se tuvo la idea de rellenar las ampollas, en las que se había hecho el vacío, con un gas inerte que no diese lugar a alteraciones químicas. Se obtuvo así el aumento de temperatura deseado, pero fue más difícil limitar la fuga de calorías. El físico Langmuir comprendió que de esto dependía la disposición del filamento dentro de la ampolla, y demostró que se podía alcanzar una dispersión mínima de calor arrollando el filamento en hélice sobre sí mismo.

Así perfeccionadas, las lamparitas con filamento en hélice fueron llamadas de “medio vatio”, pues se calculó haber llegado a crear el tipo en el cual la potencia de absorción de la corriente era reducida a la “mitad de un vatio por bujía”. Pero el triunfo más resonante fue que, con la nueva fórmula, se llegó a retardar notablemente la disgregación del filamento, logrando una duración mayor de la lamparita.

FABRICACIÓN, METALURGIA DEL TUNGSTENO: Si las vidrierías han resuelto fácilmente el problema del vidrio adecuado para la fabricación de ampollas (o bulbos) para lámparas, la fabricación del filamento es, en cambio, extremadamente delicada. Debido a que el metal, para ser utilizado eficazmente, no debe fundirse, se le extrae del “wolframio” mediante complicados procesos químicos.

El tungsteno, que se obtiene bajo forma de “óxido” del tungsteno puro, es mezclado primeramente a pequeñas cantidades de sustancias capaces de mejorar sus propiedades, siendo luego pasado a hornos especiales en atmósfera de hidrógeno (para evitar la oxidación) de estos hornos sale bajo forma de un tenue polvo gris.

Este polvo es prensado dentro de moldes a presión, y los panes que resultan son colocados en otros hornos (también de atmósfera hidrogenada), en los cuales adquieren la solidez necesaria. Por medio de una fuerte corriente eléctrica, estos panes son llevados a una temperatura próxima a la de fusión, sin alcanzarla; son forjados luego por un martinete, a alta temperatura, hasta obtenerse hilos finísimos. Estos hilos pasan a la “trefilación”, pero antes de ser confiados a las hileras (que son de tungsteno o de diamante, según el diámetro que se quiere conseguir), se los somete de nuevo a alta temperatura.

Finalmente, pulido y libre de todo resto de grafito, el delgado filamento que se obtiene está listo para ser arrollado en hélice. El tungsteno es arrollado, por medio de máquinas de gran velocidad, alrededor de un soporte de acero o molibdeno. Siendo imposible desenrollar la espiral del soporte sin provocar la rotura del filamento, es necesario “disolver” el soporte mismo con un ácido que no ataque al tungsteno.

En 1835, el escocés James Bowman Lindsay fabrica el primer bulbo  experimental. Seguía sin funcionar y más de una docena de científicos lo intentaron hasta que en enero de 1879, el inglés Joseph Swan hace la primera demostración de un bulbo incandescente que no se apaga en Sunderland. Inglaterra.

Ese mismo año, en octubre, Thomas Edison que llevaba meses trabajando en el mismo invento, consigue el mismo resultado con el modelo N°9. Edison tenía más recursos, y al año siguiente puso a la venta las primeras bombillas. El truco estaba en encontrar el filamento adecuado, y hacer el vacío dentro del bulbo de vidrio.

MONTAJE DEL PIE DE LA LÁMPARA: Una parte esencial de la ampolla de las lamparitas está constituida por el pie, el cual se compone de:

  1. a) un borde entrante de vidrio, destinado a ser soldado al cuello de la lamparita;
  2. b) un pequeño tubo de vidrio que sirve primero para producir el vacío y después para el rellena miento con gas;
  3. c) un bastoncillo de vidrio al que se aplican los soportes para el filamento:
  4. d) los hilos que traen la corriente de alimentación.

Todo, esto es sujetado sólidamente por un aplanamiento parcial de las extremidades del borde entrante y por ‘la estrangulación del tubito de vidrio. Para obtener esta estrangulación, se ablanda el vidrio exponiéndolo a la llama, y, antes de que se endurece, un chorro de aire frío es dirigido a través de la extremidad inferior del tubito para provocar en la estrangulación misma un orificio mediante el cual el interior de la ampolla se comunica con el exterior. Los hilos conductores, fijados sólidamente dentro del pie, por medio de la estrangulación, están por lo general constituidos por tres partes distintas soldadas eléctricamente entre sí.

El pie es montado totalmente con máquinas que sueldan después en forma automática la parte superior del bastoncillo para formar un botón, sobre el cual la máquina misma fija los ganchos de sostén o apoyo. Cada uno de estos minúsculos ganchos termina en una pequeñísima “colita de cerdo” destinada a retener el filamento.

También el montaje del filamento es mecánico. Éste es fijado primeramente a la extremidad de los hilos que traen la corriente de alimentación, y aquí un dispositivo de precisión anuda los filamentos a los ganchos. El pie queda unido a la ampolla mediante la soldadura del borde entrante, hecha con la llama de un soplete de gas.

La lamparita es, al mismo tiempo, bañada por un potente chorro de aire que arrastra la parte superflua del cuello del bulbo, que sobresale del punto de soldadura. De aquí, la lámpara es transportada por cadena hacia la máquina que produce el vacío. La misma máquina, calentando la ampolla, procede a la extracción del aire y al rellena miento con gas (generalmente formado por una mezcla de nitrógeno-argán-criptón).

Inmediatamente después del llenado, el tubito de vidrio, que ha servido para esta operación, es cerrado mediante estrangulamiento a la llama. La fabricación de la lamparita propiamente dicha, se da así por terminada. Ahora no falta más que unirla al casquillo, operación que se hace en caliente mediante resinas especiales. Existe una enorme variedad de lámparas incandescentes para cuya realización fueron necesarios años de estudio, de pacientes búsquedas y de pruebas de laboratorio.

Es útil aquí recordar que, además de las diversas lamparitas que todos conocemos, desde la pequeñísima para linterna de bolsillo hasta la grande para iluminación de calles, existen lámparas “incandescentes” destinadas a usos especiales. Estas lámparas difieren de las comunes por la disposición interna del filamento y por otros requisitos de aislamiento y sistemas de montaje, relacionadas con la carga de corriente que deben absorber.

Se trata de lámparas con muy potente emisión de luz, necesarias para la fotografía, rodajes cinematográficos, proyecciones, etc. En cuanto a las lámparas fluorescentes, tan de actualidad en nuestra época, poseen, en lugar de filamento, una gruesa espiral. Tampoco debe olvidarse las lámparas térmicas que, iguales en todo a las lámparas de uso común, son hoy usadas con enormes ventajas tanto en la industria como en la terapéutica.

Por aquella época el problema consistía en encontrar una materia más fuerte y preservando mayor resistencia al paso de la corriente que el filamento de carbón. Se veía de modo claro era necesario buscar un metal, y todos los que se ocupaban de estos trabajos comenzaron a estudiar metales raros, con la misma tenacidad que lo habrían hecho antes al ensayar las tierras de esta clase. Un investigador llamado Auer fue el primero que fabricó la lámpara de osmio, puesta a la venta en 1904.

El osmio es un metal que se encuentra entre los minerales de platino, y cuando se quema al aire se combina con el oxígeno, produciendo un vapor cáustico, peligroso. En el vacío del globo de cristal de la lámpara eléctrica no hay oxígeno que pueda actuar sobre él, y el filamento construido con este metal hizo bajar el coste de la luz a muy cerca de la mitad.

Pero—tales son las vicisitudes en las invenciones modernas—-un año después se presentó en el mercado otra nueva lámpara eléctrica con filamento de tántalo. Inventada por Werner von Bolton, esta lámpara daba un quinto más de intensidad que su rival, pero poco después, en 1905, se descubrió otro filamento de metal raro aún más eficaz.

Entre los escombros de algunas minas, había una substancia muy pesada, de color gris acerado, a la que no se encontraba ninguna aplicación. Los suecos la dieron el nombre de «tungsteno», que significa «piedra pesada».  Ahora bien: este material que, aparentemente, no tenía utilidad alguna, es hoy uno de los metales más importantes y necesarios.

Unido con el acero, forma el empleado en las máquinas-herramientas para preparar los titiles con el corte resistente preciso para los mecanismos que marchan a gran velocidad—tornos, taladros, perforadoras, acepilladoras y tantos otros, y que han revolucionado la industria metalúrgica. Ahora el tungsteno está camino de ser el principal manantial de luz. En el mundo. Al principio, ha habido una gran lucha entre la lámpara de tungsteno y la de tántalo. Este metal pasaba por ser uno de los más duros de los conocidos, y en sus primeros ensayos, von Bolton encontró imposible taladrar una chapa de tántalo de 1,016 milímetros. Pero refinando el metal en el arco eléctrico, y reduciendo algo su dureza, fue posible estirarle hasta conseguir alambres muy finos, y laminarle para formar hojas de pequeñísimo espesor.

Por este medio, von Bolton pudo obtener un alambre estirado para servir de filamento. La lámpara de tántalo no sólo daba Un rendimiento algo mayor del doble comparada con la de carbón, sino que también, lo que era importantísimo en la práctica, su duración era mucho mayor. Como, por otro lado, se acababan de descubrir ricas minas de tántalo en Australia, la nueva lámpara prometía ser tan económica como la ordinaria.

El tungsteno produce aún mejor luz que el tántalo, y, además, su rendimiento es una mitad mayor. La unidad de energía eléctrica produce una vez y media más intensidad con el tungsteno que con el tántalo, pero se presentaba la dificultad de que el nuevo metal era tan excesivamente duro, que no se podía estirar para convertirlo en alambre, por los medios usuales. Si se disolvía y obtenía el filamento por precipitación, era éste tan quebradizo, que la lámpara resultaba muy frágil y no se podía transportar a grandes distancias, y aun colocada en las casas, duraba muy poco. Pero, al fin, el tungsteno pudo estirarse, y con él se fabrican lámparas muy resistentes, dando clara e intensa iluminación. Produce una luz blanquísima, y es tres veces más económica que la lámpara ordinaria. Gracias a ella, el alumbrado eléctrico ha llegado al mayor grado de perfección.

Ahora lo que se precisa es encontrar metal abundante y mejorar los métodos de fabricación, para poder vender la lámpara que aparece en el mercado a un precio menor. Por de pronto, se ha encontrado tungsteno en grandes cantidades en muchas partes del mundo.

CRONOLOGÍA HISTÓRICA

  • l802 — El británico Humphry Davy hace la primera demostración de iluminación poniendo incandescente un hilo de platino sometido al paso de una corriente eléctrica.
  • 1807 — Davis hace una nueva demostración; esta vez del arco eléctrico entre dos electrodos de carbono.
  • 1835 — El escocés James Bowman Lindsay fabrica el primer bulbo de luz experimental.
  • 1841 — Primera demostración de luz eléctrica en la Plaza de la Concordia de París con el sistema de arco eléctrico.
  • 1854 — El inventor alemán Heinrich Goebel desarrolla el primer bulbo de luz moderno, en una ampolla con un filamento de bambú carbonizado en la que se ha hecho el vacío. Pero no patenta el invento y los americanos se apuntan el tanto. Goebel denunció a Edison, pero el juez le dio la razón al americano.
  • 1860 — El británico Joseph Swan patenta el primer bulbo incandescente, es decir, la primera bombilla experimental.
  • 1879 — En enero, Joseph Swan muestra al mundo la primera bombilla de hilo incandescente. En octubre, Edison hace lo mismo.
  • 1901 — La empresa inglesa Cooper Hewitt Cop. Produce la primera lámpara de vapor de mercurio.
  • 1910 — El francés George Claude fabrica el primer tubo de neón.
  • 1933 — El americano George Elmer fabrica el primer tubo fluorescente de la historia

 

 

 

El estudio se basa en el efecto de Peltier que permite generar electricidad mediante el contraste de temperaturas. Para ello se necesitan dos metales unidos por, lo que se denominan, uniones de Peltier. Cuando los metales experimentan cambios de temperatura, las propias uniones canalizan energía. En su caso, Makosinski calculó que necesitaría generar hasta cinco grados de diferencia entre la placa metálica fría y la más caliente, y para ello se valió de la temperatura ambiente en una, y del calor que genera el contacto de la palma de la mano en la otra, consiguiendo producir hasta 5,4 mW, suficiente para iluminar las bombillas LED de su linterna.

“El objetivo de mi proyecto ha sido crear una linterna que funcione únicamente con el calor de la mano humana. Utilizando cuatro uniones de Peltier y la diferencia de temperatura entre la palma de la mano y el aire ambiente, he diseñado una linterna que proporciona luz brillante sin baterías ni partes móviles. Mi diseño es ergonómico, eficiente desde el punto de vista termodinámico y solo necesita una diferencia de temperatura de cinco grados para funcionar y producir un brillo equivalente a cinco velas”, dijo Makosinski.

No obstante, durante sus pruebas comprobó que, si bien podía generar la electricidad necesaria, el voltaje no alcanzaba los niveles adecuados usando únicamente las uniones de Peltier. Por este motivo tuvo que buscar información en internet sobre cómo adaptar el diseño del circuito para solucionarlo y, después de investigarlo a fondo, localizó un tipo de transformador concreto que permitía alcanzar los niveles de voltaje necesarios. El diseño final, aclara la inventora, “incluía las uniones de Peltier en un tubo de aluminio hueco que se insertó en una tubería de PVC abierta (para que la temperatura del aire enfriase el interior), mientras que en el otro extremo, la palma de la mano calentaba el metal, generando la diferencia de temperatura”

Objective

build a flashlight based on the seebeck peltier effect

Justification

the seebeck peltier effect is used with the cells that are capable of generating an electric current since it has different between 2 adjacent surface
This effect works on the basis of the energy produced by the body because it captures the warmth of our hands when holding it. this will help to avoid using batteries in these flashlights.
in this product we will reorce the lanterns that are no longer used to put a sensor with the peltier seebeck cells
This is a thermoelectric device that is to say it is based on the fact that when certain materials are lime, they generate a significant high electric voltage, as the number of cells increases, the irradiating surface increases the power.
The technology is currently only used in very specialized fields so it is an innovative option since it avoids the contamination that the batteries generate since this is not a long-term pollutant.
also this effect is reversible this does not produce in all the materials; especially well in semiconductors (materials that are made with a chip) are effecient is that they need to be very good at transmitting electricity, but not heat

Hypothesis

if we manage to build a base lantern of the seebeck peltier effect

 

Method (materials and procedure)

4 peltier cells of 40mm X 40mm
1 aluminum tube
1 PVC tube of 6 diameter
9 white light leds with a capacity of 3.7
7 cm of red and black cable
1 captin
Welding and soldering paste
Silicone gun
3 silicone refills
Isolate tape
Voltmeter
Process
1.- Check the volts of the peltier cell with the voltmeter (15-25 degrees)
2.- Place your hand in the peltier cell to check the temperature rise (37-45)
3.-Insert the aluminum tube to the PVC tube and secure it with silicone
4.-Cut vertically the upper part of the tubes until you reach the other end of the tube
5.- Place the peltier cells in the part later cut and secure it with silicone
6.- Solder the LEDs to the cell with the soldering iron and solder to generate electricity

 

Results

We obtained a flashlight that works with a cell called peltier, produces a bright light and with a size of approximately 15 cm in length and 6 in diameter, it has       white color due to a pvc tube is used, the lantern weighs approximately 350 grams and its cost is 500 pesos.

Discussion

The power of the peltier cells is one volts but when adding the cells to our prototype we discovered that they have the capacity of .7 volts or so, which we decided to increase the number of cells.
This flashlight works correctly since there is no problem to generate energy when holding the cells. It generates necessary energy.

 

Conclusions

 

It was possible to obtain an alternative for commercial lanterns, this manages to light with only hold it in the part that are the cells. Another benefit is the reduction of the use of batteries that harm us in the long term and damage the environment. In addition, the fact that the cells are renewable they can be used in different electronic objects

Bibliography